WATERHAMMER

James Stratton w/ Schimberg Co.

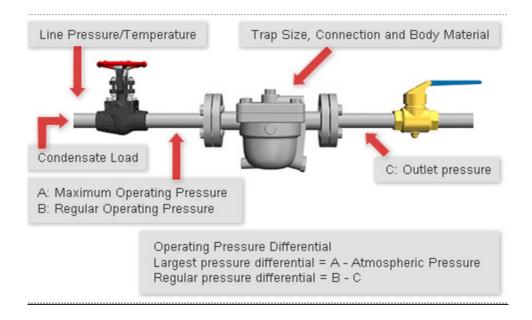
PIPE, VALVES, AND FITTINGS SINCE 1918

WATERHAMMER IS DANGEROUS

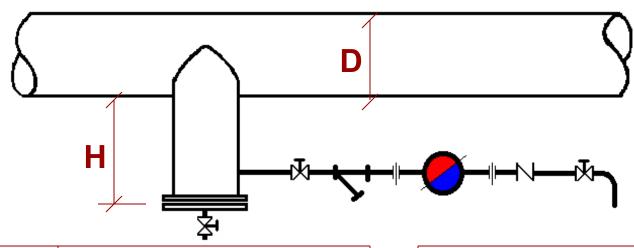
AND CAN BE DEADLY!!

University of Northern Iowa worker dies in steam tunnel

Monday morning 'major' leak caused death, officials say


Water Hammer Ingredients

- 2 Phase Flow with UNWANTED condensate in steam lines
- •How these close relatives don't get along in the piping system



Accumulating Condensate

- We must remove condensate from the steam lines
- Working steam traps are essential

Typical Steam Main Drip Station

Size of Main 'D'	Collection Leg Diameter
1/2" to 4"	Same dia. as main 'D'
5" & larger	2 to 3 Pipe Sizes Smaller than Main,
	But Never Smaller than 4"

Length of Collection Leg 'H'

Automatic Start up: 'H' to be 28" or More

Supervised Start up: Length to be1.1/2 times steam Main Diameter, but never shorter than 8"

Steam Main Drip Stations

Required Locations

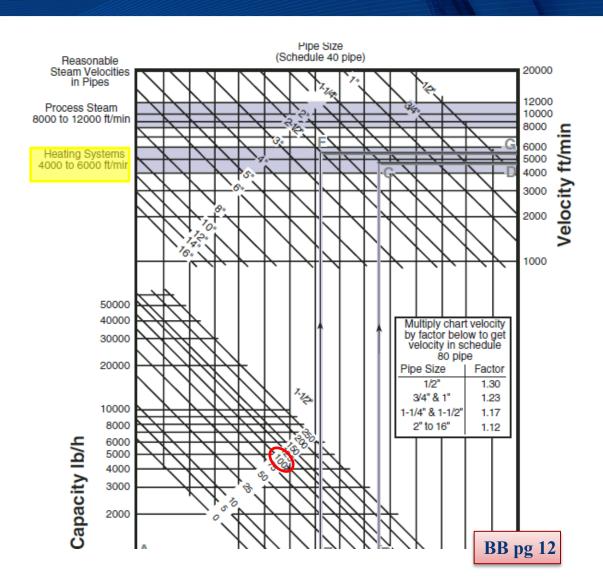
- •Elevation Changes
- Changes of Direction
- •Expansion Loops-Leading Edge
 - •End of Main
 - In Front of Control Valves
 - •In Front of Isolation Valves
- •In Horizontal Runs- 150 to 300 foot intervals

Failed Steam Main Drip Stations

Condensate continues to accumulate

Velocity of Steam = SPEED

How many feet in a mile? 5280 One mile per minute = MPH? 60 MPH

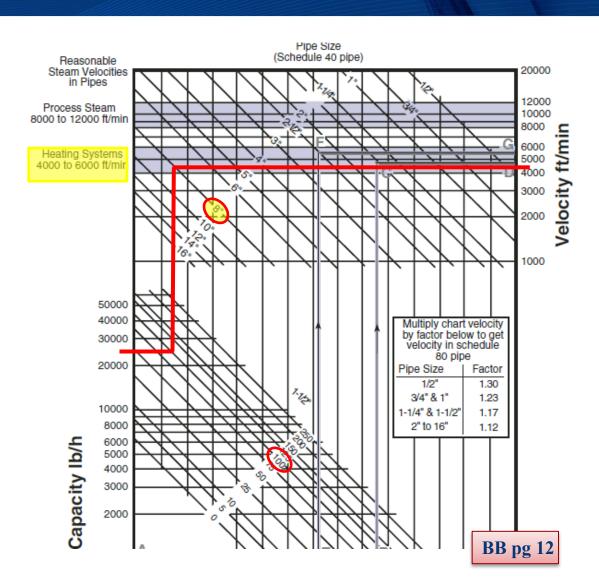

Pipeline Sizing Example

Mass flowrate or capacity at

- > 1000 #/HR
- **➤** 100 psig
- > 25 PSI

Heating system application

- > 1-1/2" Pipe 100PSI
- > 3" Pipe @ 25 PSI


Pipeline Sizing Example

Mass flowrate or capacity at

- > 26,000 lb/h
- **➤** 100 psig

Heating system application

- **≻** 8" Pipe
- ➤ Velocity 4,850 fpm

Failed Steam Main Drip Stations

Condensate continues to accumulate

If the excess condensate is unable to drain, doesn't that make the pipe size virtually smaller? Now the steam increases velocity!!!

3" PIPE = 60 MPH = PERFECT!

TLV ToolBo	x - For iOS and Android		
Input Data			Units Imperial 🗸
Pipe Grade		ANSI Sch40	~
Pipe Size		NPS3	~
Steam Pressure		150	psig 🗸
Steam Flow Rate		6000	lb/h ✓
	Calculate	<u>Show</u> <u>Clear</u>	Advanced Options
Steam Velocity Result	61	l.031 n	nile/h 💙

2" PIPE = 134 MPH

TLV ToolBox - For iOS and Android					
Input Data		Units Imperial 🗸			
Pipe Grade	ANSI Sch40	~			
Pipe Size	NPS2	~			
Steam Pressure	150	psig 🗸			
Steam Flow Rate	6000	lb/h ✓			
Show Advanced Options Calculate Clear					
Steam Velocity 134 Result	1.456 n	nile/h			

1-1/2" PIPE = 221 MPH

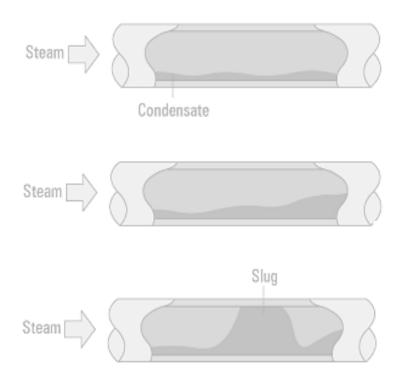
TLV ToolBox - For iOS and Android		
Input Data		Units Imperial 🗸
Pipe Grade	ANSI Sch40	~
Pipe Size	NPS1 1/2	~
Steam Pressure	150	psig 🗸
Steam Flow Rate	6000	lb/h ✓
Calculate	<u>Clear</u>	v Advanced Options
Steam Velocity 22 Result	1.62	mile/h

1" PIPE = 522 MPH!!!!!!

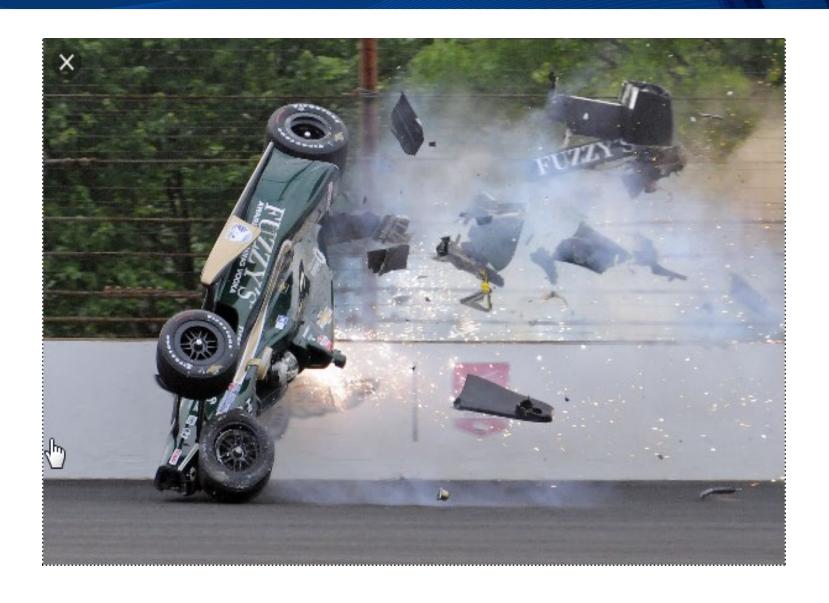
TLV ToolBox - For iOS and Android						
Input Data		Units Imperial 🗸				
Pipe Grade	ANSI Sch40	~				
Pipe Size	NPS1	~				
Steam Pressure	150	psig 🗸				
Steam Flow Rate	6000	lb/h ✓				
Show Advanced Options Calculate Clear						
Steam Velocity 52. Result	2.048 m	nile/h				

Failed Steam Main Drip Stations

Condensate continues to accumulate


Wind Speed determines the size of the waves on water = the velocity of steam in the piping system determines the wave size of the condensate

Now Add Inadequate Drainage



60 mph... ☺

120 MPH??? ⊗

Slug of water now at 200 MPH?? Higher??????? OUCH!!

THE CRASH!!

Waterhammer

Waterhammer causes noise, vibration, and damage

Let's Watch a Video 17:00 SCHIMBERG STEAM LAB CEDAR RAPIDS IOWA

eStorefront Material Test Reports

HOME

ABOUT US

PRODUCTS

SERVICES

LOCATIONS

TRAINING

CAREERS

CONTACT US

Training

Training and education of new technology and materials is an ongoing commitment at Schimberg Co. We provide educational programs to professional contractors in the plumbing and industrial PVF industry.

Our highly-trained and industry experienced facilitators host training in our own training facility or, for certain trainings, at the customer facility or job site for hands on experience. In addition to our training courses, we can facilitate training offered by our vendors on new and existing products and materials.

Learn more about our training:

Steam Fundamental Level 1 Steam Fundamental Level 2 Valve and Valve Automation HDPE Fusion Aquatherm Fusion

Training Calendar

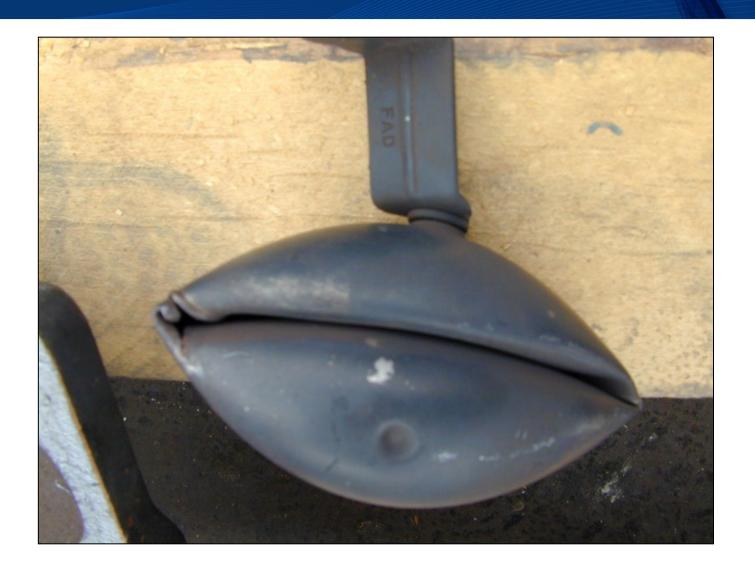
Steam Fundamental Level 1

Steam Fundamental Level 2

HDPE Fusion

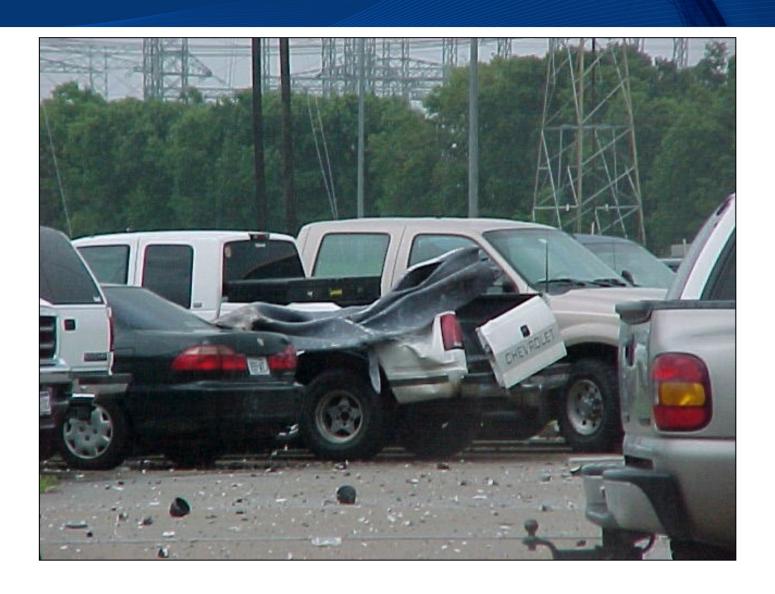
Aquatherm Fusion

Orion Socket Fusion

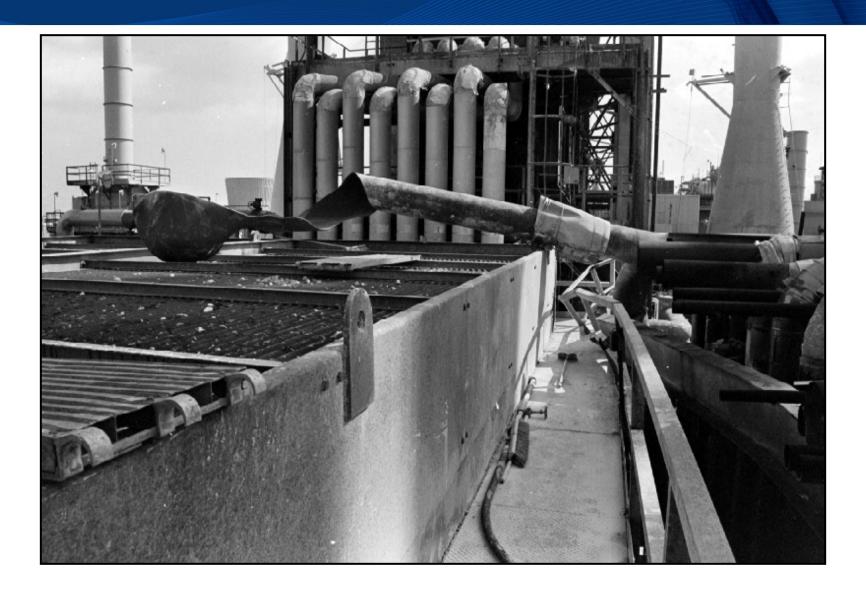

Flexitallic Best Practices

Product Demonstration Videos

Crushed Float due to Waterhammer



What is missing?



Found It

Larger example of Waterhammer

30" VALVE 30 PSI = 1 DEATH

CONCLUSION

- QUESTIONS?
- www.Schimberg.com